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Abstract
In the context of Feynman’s derivation of electrodynamics, we show that
noncommutativity allows particle dynamics other than the standard formalism
of electrodynamics.

PACS numbers: 11.10.Nx, 45.20.Jj

1. Introduction

The Feynman procedure [1] to obtain Maxwell’s equations in electrodynamics has been
reviewed under different kind of settings, and several nontrivial and interesting generalizations
are possible (see for instance [2–5, 7–9]). In general, the locality property that different
coordinates commute is assumed. However, as pointed out by Jackiw [10], Heisenberg
suggested in a letter to Peierls [11] that spatial coordinates may not commute; Peierls
communicated the same idea to Pauli [12], who told it to Oppenheimer; eventually the idea
arrived to Snyder [13] who wrote the first paper on the subject. On the other hand, the existence
of a minimal length beyond which no strict localization is possible, the importance of the
physics in noncommutative planes, the noncommutative Landau problem, Peierls substitution,
and the fact that noncommutative field theory is relevant not only in string theory but also in
condensed matters motivated a new interest on the subject during the last years.

Due to this increasing interest in noncommutative field theories, it is worthwhile to
consider the noncommutative version of such procedure, where locality no longer holds,
which has a better chance to find new kinds of particle dynamics, which after all, according to
Dyson [1], was the original aim of Feynman. Such considerations were actually done in [14],
but the argument given there seems to be inadequate or incomplete for two reasons: they only
considered the case where the nonlocality is described by a coordinate-independent Moyal
Bracket, whereas nowadays the non-constant (i.e. coordinate dependent) noncommutative
spaces are gaining a lot of attention in the noncommutative realm, because of the appearance
of such a type of noncommutativity in various contexts specially in string theory. Among the
papers that invoke variable noncommutativity are [15–22]. On the other hand, the treatment
in [14] is somewhat sloppy and the main conclusions are not correct, as we shall point out
later on.
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3764 J F Cariñena and H Figueroa

To avoid unnecessary complications due to operator ordering, we shall only discuss the
classical analogue of the Feynman procedure in the noncommutative case. Accordingly,
the appropriate setting would be in terms of Poisson brackets, which is regarded as the
classical limit of the commutator of quantum observables. But we shall explore the different
possibilities arising from the dependence of the fundamental brackets on the different sets of
variables involved.

Let F(M) be the algebra of functions (the algebra of classical observables) on a manifold
M (the classical state space). A Poisson structure on M is a real skew symmetric bilinear map
{·, ·} F(M) × F(M) → F(M) satisfying the Jacobi identity:

{F, {G,H }} + {H, {F,G}} + {G, {H,F }} = 0, ∀F,G,H ∈ F(M),

and such that the map XF = {·, F } is a derivation of the Lie algebraF(M), for each F ∈ F(M),
in other words, XF is a vector field, usually called a Hamiltonian vector field, and F is said
to be the Hamiltonian of XF . This second property, called the Leibnitz’ rule, is important as
there are many examples of Lie algebra structures on F(M) that do not satisfy Leibnitz’ rule.

In particular, if ξa denotes a set of local coordinates on M, then, using the summation
index convention, the local coordinate expression of the Poisson bracket becomes

{F,G} = {ξa, ξb} ∂G

∂ξb

∂F

∂ξa
. (1)

2. The velocity-independent case

In this section we study the Feynman argument in the framework of a tangent bundle, in the
case where the bracket is nonlocal; in other words, we do not suppose that the variables on
the configuration space commute. So we assume that the Poisson manifold M is the tangent
bundle T Q of an n-dimensional configuration space Q, with local coordinates xi, ẋi , for
i = 1, . . . , n = dim Q. Thus a general Poisson bracket on T Q is locally given by

{F,G} = {xi, xj } ∂G

∂xj

∂F

∂xi
+ {xi, ẋj } ∂G

∂ẋj

∂F

∂xi
+ {ẋi , xj } ∂G

∂xj

∂F

∂ẋi
+ {ẋi , ẋj } ∂G

∂ẋj

∂F

∂ẋi
. (2)

To shorten the length of the computations and simplify the mathematics of the problem we
shall consider only autonomous systems, so the fields below do not depend directly on the time
t, but our arguments can be extended to non-autonomous systems and more general contexts.
We first consider a bracket such that

{xi, xj } = gij (x), (3)

where gij is an arbitrary skewsymmetric matrix of functions, fulfilling the constraints that a
Poisson bracket satisfying the Leibniz rule impose. In other words, we examine the possibility
of a bracket without the locality property; a condition needed, for instance, in a classical
description of a massless particle [23]. We also require

m{xi, ẋj } = δij , (4)

so this part of the Poisson bracket is the same as in the commutative case, considered by
Feynman. Now, the Jacobi identity

{xi, {xj , ẋk}} + {ẋk, {xi, xj }} + {xj , {ẋk, xi}} = 0

entails, upon using (4), and ∂gij /∂ẋk = 0,

0 = {ẋk, gij } = {ẋk, xl}∂gij

∂xl
+ {ẋk, ẋl}∂gij

∂ẋl
= − 1

m

∂gij

∂xk
. (5)
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Thus, the matrix gij is a constant skewsymmetric 3 × 3 matrix, and nonconstant matrices will
only be possible if one assume dependence of g on the dotted variables, but we explore this
possibility in the next section.

To continue with Feynman’s argument we further assume Newton’s equations:

mẍj = F j (x, ẋ). (6)

In other words, we assume that the equations of motion can be written as

dxi

dt
= {xi,H } = ẋi , (7)

dẋi

dt
= {ẋi , H } = 1

m
F i(x, ẋ), (8)

with {·, ·} being a Poisson bracket and H a Hamiltonian function both to be determined. Note
however that as we assumed the nonlocality property of the Poisson bivector, such bivector
cannot be associated with a symplectic structure defined by a regular Lagrangian, because
the locality assumption is equivalent to the vanishing of the symplectic form ωL on a pair
of vertical fields, which is a necessary condition for the existence of a regular Lagrangian
[24, 25].

Now, we restrict ourselves to the three-dimensional case dim Q = 3, and take the time
derivative of (4) to obtain

0 = m{ẋi , ẋj } + {xi, ẍj } = m{ẋi , ẋj } + {xi, F j },
therefore

{xi, F j } = −m{ẋi , ẋj } = m{ẋj , ẋi} = −{xj , F i},
so {xi, F j } is skewsymmetric and we can define a field Bk(x, ẋ) that, in analogy with the
commutative case, we may call the magnetic field, by means of

− 1

m
{xi, F j } = {ẋi , ẋj } = 1

m2
εijkBk(x, ẋ), (9)

where εijk denotes the fully skewsymmetric Levi-Civita tensor, for which ε123 = 1; so, for
instance,

B3 = m2{ẋ1, ẋ2}. (10)

Now, the Jacobi identities with one position and two velocities entail

{xi, Bj } = 0,

and the local expression (2) gives

0 = {xi, Bj } = gik

∂Bj

∂xk
+

1

m

∂Bj

∂ẋi
. (11)

In the commutative case, i.e. when gik ≡ 0, (11) implies that Bj is independent of the ẋ’s, but
in our setting this is not necessarily true. However, notice that, for instance

{ẋ3, B3} = m2{ẋ3, {ẋ1, ẋ2}}.
Thus, the Jacobi identity with three different velocities gives

{ẋi , Bi} = 0. (12)

Once again the local expression of the Poisson bracket gives

m{ẋi , Bj } = −∂Bj

∂xi
+ m{ẋi , ẋk}∂Bj

∂ẋk
= −∂Bj

∂xi
+

1

m
εilkBk

∂Bj

∂ẋl
,
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and then we can rewrite (12) as

div B = − 1

m
B · ∇̇ × B, (13)

upon using the notation ∇̇ = (∂/∂ẋ1, ∂/∂ẋ2, ∂/∂ẋ3). This is the equation that replaces the
Maxwell equation div B = 0, describing the absence of monopoles in the noncommutative
case. In the particular case when the field B is independent of the ẋ’s, the previous
equation (13) reduces indeed to the Maxwell equation

div B = 0.

Now, we mentioned already that B may very well depend on the variables ẋ, but even
if we assume that the field B is independent of the ẋ’s, from (11) we see that B can still
depend on the variables x, since the matrix gij , being a constant skewsymmetric 3 × 3 matrix,
is singular. Therefore, the conclusion in [14] that the conditions (3), (4) and (6) entail static
Maxwell equations is wrong. One of the problems in [14] is that in the noncommutative space
that they are using, which is neither explicitly defined nor described, it is not clear at all the
meaning of the dotted variables.

On the other hand, in the quest of an equation similar to the second Maxwell equation,
we define another field E, the electric field, by Ej = F j − εjkl ẋ

kBl . This makes sense in
the commutative case because, there, B is certainly independent of the ẋ’s and, as we shall
see in a moment, (9) implies that F is at most linear in the ẋ’s variables, but again this is
not necessarily what happens in our setting, even if we assume independence of B on the ẋ’s
variables. Indeed, from (9) and (11) we obtain

{xi, Ej } = {xi, F j − εjkl ẋ
kBl}

= {xi, F j } − εjkl{xi, ẋk}Bl − εjkl ẋ
k{xi, Bl}

= {xi, F j } − 1

m
εjklBl = 0;

therefore, as claimed, in the commutative case the field E, so defined, is independent of the
velocities.

Following the commutative case, we take the derivative with respect to t of (10):

ẋl ∂Bk

∂xl
+

1

m
F l ∂Bk

∂ẋl
= m2

2
εijk({ẋi , F j } + {F i, ẋj }) = mεijk{F i, ẋj }

= mεijk({Ei, ẋj } + εiln{ẋl , ẋj }Bn + εilnẋ
l{Bn, ẋ

j }). (14)

Now, the local expressions of the brackets give

mεijk{Ei, ẋj } = mεijk

(
{xl, ẋj }∂Ei

∂xl
+ {ẋl , ẋj }∂Ei

∂ẋl

)

= εijk

(
∂Ei

∂xj
+

1

m
εljnBn

∂Ei

∂ẋl

)

= εijk

∂Ei

∂xj
+

1

m
(δilδkn − δinδkl)Bn

∂Ei

∂ẋl

= εijk

∂Ei

∂xj
+

1

m

(
Bk

∂El

∂ẋl
− Bn

∂En

∂ẋk

)
.

Moreover,

mεijkεiln{ẋl , ẋj }Bn = m(δjlδkn − δjnδkl){ẋl , ẋj }Bn

= −m{ẋk, ẋj }Bj

= − 1

m
εkjlBlBj = 0,
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on account of (9). Also, using (12), we have

mεijkεilnẋ
n{Bl, ẋ

j } = m(δjnδkl − δjlδkn)ẋ
n{Bl, ẋ

j }
= m(ẋn{Bk, ẋ

n} − ẋk{Bl, ẋ
l})

= mẋn{Bk, ẋ
n}

= m

(
ẋn{xl, ẋn}∂Bk

∂ẋl
+ ẋn{ẋl , ẋn}∂Bk

∂ẋl

)

= ẋl ∂Bk

∂xl
+

1

m
ẋnεlnrBr

∂Bk

∂ẋl

= ẋl ∂Bk

∂xl
+

1

m
F l ∂Bk

∂ẋl
− 1

m
El ∂Bk

∂ẋl
.

Collecting all together, we see that (14) reduces to

εijk

∂Ei

∂xj
= 1

m

(
El ∂Bk

∂ẋl
+ Bl

∂El

∂ẋk
− Bk

∂El

∂ẋl

)
. (15)

In vector form this can be rewritten as

(rot E)k +
1

m

(
(E · ∇̇)Bk + B · ∂E

∂ẋk
− (∇̇ · E)Bk

)
= 0, (16)

which is what replaces the Maxwell equation corresponding to Faraday’s law, in the setting
suggested at the beginning of this section. Had we assumed that F in (6) can depend on t,
and therefore B defined in (9) also is t dependent, then the term ∂Bk/∂t would appear in the
left-hand side of (14) and in the right-hand side of (15). Of course, as explicitly remarked in
Dyson’s paper [1], only the homogeneous Maxwell equations can be obtained.

Finally, we point out that had we assumed that the fields B and E do not depend on the
ẋ’s (so F is actually a Lorentz force), then (13) and (16) would exactly be the usual Maxwell
equations, so in the limit we have a smooth transition into the commutative case, contrary
to what is claimed in [14]. However, here the Lorentz force condition would be an extra
assumption, not a consequence as in the commutative case considered in [1].

3. Velocity-dependent Poisson brackets

We now return to the case where the matrix gij = gij (x, ẋ) in (3) also depends on the variables
ẋ. Then gij no longer need to be a constant matrix, as now (5) rather imposes on gij the
condition

0 = − 1

m

∂gij

∂xk
+ {ẋk, ẋl}∂gij

∂ẋl
.

Moreover, the Jacobi identity on xi, xj and xk reduces to

0 = {xi, gjk} + {xk, gij } + {xj , gki}
= gil

∂gjk

∂xl
+ gkl

∂gij

∂xl
+ gjl

∂gki

∂xl
+

1

m

(
∂gjk

∂ẋi
+

∂gij

∂ẋk
+

∂gki

∂ẋj

)
,

which gives exactly one more constraint on the gij ’s, since the skewsymmetry property of
gij entails that a permutation of the indices gives the same equation as for i = 1, j = 2
and k = 3 when the permutation is even, and negative the expression if the permutation
is odd. Furthermore, in the previous section we did not use the fact that the g’s were
constant; therefore by the same token we obtain also for gij (x, ẋ) the generalized Maxwell
equations (13) and (16).
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On the other hand, even though condition (4) simplified matters quite a bit, it may be
useful, in some settings, to modify also this condition. Thus we now address the problem
when

{xi, xj } = gij (x, ẋ), (17)

and

m{xi, ẋj } = δij + fij (x, ẋ), (18)

where fij is another matrix compatible with the Poisson bracket properties, which now impose
several relations among the gij ’s and the fij ’s, again the gij ’s need not be constants.

In principle, there is no need to impose a special condition on fij , but the parallelism with
the computation of the previous section is more transparent if one assumes, as we do, that
fij is skewsymmetric. In [14] a particular instance of this situation was considered, but they
assumed that the variables ẋ are functions of the xi’s, a hypothesis without much physical
justification, they assume a special form of the fij ’s which is completely unnecessary, and
they place their argument in the constant noncommutative case.

Once more, taking the derivative with respect to t we obtain

dfij

dt
= m{ẋi , ẋj } + {xi, F j },

therefore

{ẋi , ẋj } = 1

m

(
dfij

dt
− {xi, F j }

)
,

and since fij is skewsymmetric,

{xi, F j } = −{xj , F i},
so a field B can be defined as in (9), and exactly the same computations can be performed,
leading to some equations a bit more involved, but similar to (13) and (16). We see no point
in repeating the calculations.

In this context the equations of motion become

ẋi = {xi, xj } ∂H

∂xj
+ {xi, ẋj } ∂H

∂ẋj
, F i = {ẋi , xj } ∂H

∂xj
+ {ẋi , ẋj } ∂H

∂ẋj
,

which are more complicated than the classical ones, but, in principle, a Hamiltonian description
is still possible in the noncommutative setting.

We conclude that noncommutativity does allow other dynamics than the standard
formalism of electrodynamics.
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